
DataThief III manual v. 1.1

Bas Tummers

bas@datathief.org

© 2005-2006 by Bas Tummers

DataThief IIIDataThief III

Table of contents
1. A quick introduction 3

2. DataThief full description 7

2.2. Defintion of axes 7

2.2.1. Systems with three well defined points 7

2.2.2. Systems withouth three well defined points 7

2.2.3. Polar coordinates 7

2.2.4. User defined axes 9

2.3. The trace process 12

2.3.1. Tracing 12

2.3.2. Fundamentals of tracing 12

2.3.3. Hints 14

2.4. Individual points 16

2.4.1. Error bars 17

2.5. Defintion of the output 19

2.5.1. Translators 20

2.6. Profiles 23

2.7. Preferences 24

2.7.1. general 24

2.7.2. Mouse click definition 25

2.7.3. Data Definition 25

2.7.4. Trace controls 26

2.7.5. Constants 27

2.7.6. Functions 28

2.8. Menus 29

2.8.1. File 29

2.8.2. Edit 29

2.8.3. Axis 29

2.8.4. profiles 29

2.8.5. Setings 29

2.8.6. Action 30

2.8.7. Data 30

2.8.8. Help 30

2.9. DTC, DatThief Code 30

2.9.1. Introduction 30

2.9.2. Lexical structure 30

2.9.3. Data types 30

2.9.4. Variables 33

2.9.5. Expressions and operators 33

2.9.6. Statements 38

2.9.7. Functions 42

2.9.8. Predefined functions 46

2.9.9. A full scale example 50

2.10. Known problems 52

3

1. A quick introduction
DataThief III is written in Java. This means, that apart from the "executable" called Datathief.jar, you will have
to have the Java Virtual Machine. The Java Virtual Machine can be downloaded from www.java.com. Follow the
instructions that are appropriate for your machine.

Once the virtual machine is installed, you may start DataThief.

On Windows, double click the Datathief.jar icon.

On Macintoshes with MacOS 8 or MacOS 9, double click the Datathief application icon.

On Macintoshes with MacOS X and on Linux or Unix either double click the Datathief icon, or go to the
directory where you installed DataThief and type Datathief.

Once you have a running DataThief, select "Open..." from the File menu, and select the file you want to take
data from. In this example, we used "example.png"

On top you see the menu bar. The light gray area underneath it is the tool bar, and the white area with the
image in it is the image area. In the image area you see the "Dump", that is the small gray window with the
target circle in it. Also you see six location indicators. Three are coordinate indicators. These have an X through
there center. The other three are the Start location indicator (green), the Stop location indicator (red) and the
Color location indicator (blue). These have a + through their center.

In the tool bar you see from left to right the three reference point indicators, each with it's own color. Note the
difference between a location indicator, which is a circle giving a position on your graph, and a point indicator,
which is a button that allows you to find the location indicator and one or two text fields that allow you to
enter the coordinates for the location. After each indicator are two text fields where the coordinates of the
reference points will be filled in. The shallow red vertical bar is the quality indicator. It gives an assessment
of the quality of your axis definition. As we have not yet defined the axes, the quality indicator is red which
means poor quality. Right from the quality indicator you see the zoom in button and zoom out button. These
let you zoom in and out of the image. Right from these you see the message area stating that the "Reference
point values create a line".

4

If you look at the values that are the coordinates for the three reference points, you will see these are all 0. So
actually they even only define a point, and certainly not a valid system of axes.

The way to define your axes is:

1. Position the three reference location indicators over appropriate points. You can find the location indicator
by clicking on the reference point indicator. The location indicator will flash three times through black,
white and red.

2. Fill the coordinates corresponding with the location in the reference point coordinate text fields.
3. Fine tune the reference location indicators (by zooming in on them)
Once these steps are taken, our example looks like

Notice that the quality indicator now is fully green, showing perfect quality. Also notice that the message area
is replaced by other tools.

Next to the zoom buttons you see the trace color indicator. This is the area where you can see the color you
want to trace. Actually it will always display the color that is underneath the color location indicator. Underneath
it is the zoom indicator, telling you the image is at it's original size. Right from these you see the Start – End –
and Color point indicator. These three define which line to trace. Then you see three greyed out indicators Prev,
Hint and Next. We shall cover these later. Finally you see four buttons:

 Trace Clear Trace mode Point mode

Now we shall define the line to trace. Let us follow the red line that starts at [0, 40]. The green location indicator
with the small extension at the right side is the start location indicator with the extension giving DataThief an
idea about the direction to start tracing (this allows you to start tracing somewhere in the middle of a line).
So we shall locate it at the extreme left of the red line with the direction pointer pointing right and up. The red
indicator is the end location indicator. This serves two purposes. It allows us to stop tracing in the middle of a
line, but more important it prevents DataThief from retracing the path in reverse direction once the end of the
line is reached. So we locate it at the right side of the red line.

The color location indicator (blue) tells DataThief which color to trace. Using this in stead of the start- or end

5

location indicator allows you to choose the best defined location to pick the color to trace.

When you push the "Trace" button , the "Progress" will show, though on fast computers this could be gone so
quickly that you will not even notice it. On slower computers it will verbalize the progress stages, and finally
show the number of points traced.

Once the Trace process is finished, DataThief looks like

If you look closely, you will see that the red line has a thin black line superimposed. That is the traced line.

If you are interested in as much data as you can get from the image, you may now save the collected data
using the "Export data.." option under the "File" menu. DataThief will offer to export the data in a file called
"example.txt". In the example shown above, the file contained 990 points.

Maybe you are not interested in this amount of information, and are you happy just know the values at x
being an integer value. To get this, click on the "Settings" tab in the tool panel and select "Output distance"
in stead of "All points", so you may read

 Output distance 1 on the primary axis

What you ask is that The distance between points must be 1 on the primary axis, where 1 is measured in
terms of the values on this axis.

Click the "Trace" tab in the tool panel, and again click the "Trace" button. You have to click the Trace button
again, because the culling out process is part of the trace process, and will not be performed merely on a
change of the Settings. The traced line will now follow the red path more loosely, only connecting dots that
more or less coincide with whole values on the X-axis. To see these points in more detail, click the "Points

mode" button

6

You can move the mouse pointer over any of the found points to read it's coordinates. The black buttons
labelled "Prev", "Point" and "Next" may be used to browse through the points in (reversed) sequence. You can
export these points, both in Trace mode and in Points mode, using "Export data" under the File menu.

Should you later want to do more with this graph, for instance trace the blue line, then it may be wise to
save the settings. Select "Save" of "Save as..." From the file menu. A file dialog will appear offering to save
the settings as "example.dtf". All information that is important to tracing this image is saved, including the
path of the image. This means that if you move, rename or delete the image, you may still open the saved
settings, but the image will not be shown.

DataThief is shareware.
If you find the program useful and intend to use it, you are requested to pay the shareware fee, see
http://www.datathief.org.

The benefit from paying the shareware fee, apart from the fact that you enable the production of more
shareware programs, is a key that unlocks a number of features in DataThief that will be described in this
manual but are only available with this key.

These features include:

• other axes systems than the standard linear orthogonal system.
• Simple definition of systems without a clearly defined origin.
• Axes with non-numerical values, e.g. a date-based axis.
• Maintaining multiple sets of predefined settings simplifying the definition of your system.

7

2. DataThief full description

2.1. Loading an image
You load an image file using the "Open" menu item under the "File" menu.

The file dialog allows you to select only image files, or specific image files (like only Jpg files). Macintosh, Linux
and Unix users, remember that the file selection process uses the extension of the file. So if you save your
scan without an appropriate extension, the only way to see it in the open file dialog is to look at all files.

One other option the file dialog offers is to view DataThief files (dtf). Dtf files are used to save all settings from
DataThief so you can work on this file later without having to define everything anew.

DataThief can read Gif, Jpg and Png files. Basically of course, the better the scan of the graph, the better
the results. But there is a limit to the amount of memory that DataThief can use. If you load an image that
is "too large", DataThief may issue a "Fatal error", either while loading the image or, usually, when you
attempt to zoom in on the image.

2.2. Definition of Axes

2.2.1. Systems with three well defined points
The most common kind of graph we know is one with an X-axis and a Y-axis that have a clearly defined
intersection point. The example.png in Chapter 1 has this intersection point at [0, 0].

Such a system offers three points of which both the X- and the Y-coordinate is known, and these point are
not in one line.

For such a system The DataThief standard mode for axes definition suffices. This means you drag – in
Trace mode – the three reference location indicators to the three well defined points, fill in the appropriate
coordinates at the reference point indicators and select the correct type of axis system from the Axes menu.

2.2.2. Systems without three well defined points
Suppose that in example.png from Chapter 1, there were no values given for the origin. Of course, you could
assume that the crossing point of the X- and Y-axis has coordinate [0, 0], but you can not be certain of that. In
such a situation, you select "4 Point ref" from the "Setting" menu.

This results in a fourth reference location indicator, and a layout of the reference point indicators that looks
like

The layout has been made deliberately to look like a vertical Y-axis and a horizontal X-axis.

You position the two reference location indicators that correspond with YP1 and YP2 on two different points
on the same vertical line. You enter the Y coordinate for those locations into the text field corresponding to the
point. You do the same with XP1 and XP2 on a horizontal line. In the image above this has been done for our
imaginary Example.png without it's origin values given.

This method of defining axes will only work in systems that have independent X and Y axes, such as the
standard orthogonal system. But for example in a polar coordinate system the 4 Point reference method
can not work.

2.2.3. Polar coordinates
DataThief offers the possibility to trace data in polar coordinate systems or, for that matter, in any system you
like to devise. But some polar coordinate systems are already predefined.

The most commonly used system is one with a linear r and ϕ in radians or degrees.

In the next example I have set up a system in polar coordinates, linear r, ϕ in degrees with 0° pointing straight
to the right and ϕ running from 0° to 360° counter clockwise. Each circle arc stands for 1 unit in r.

8

Note that the r value for Ref 0 is 3 and not -3 and of course r for Ref 2 is 4 and not -4.

Unlike earlier versions of DataThief, DataThief III is capable of tracing lines that cross themselves, usually
without getting confused about where to go at the intersection point.

After setting the Start location indicator at the left most point of the blue line, the End location indication at the
other end and the Color location indication on the blue line, and with a reasonable setting for which points to
trace (input distance 40 on the traced path), the resulting graph in Point mode looks like

9

2.2.4. User defined axes
DataThief comes with a number of predefined axes, but it is impossible to predefine every axis system
imaginable. Therefore it is possible to define your own system of axes. To do this, you select ‚"Edit Axes"
under the "Axes" menu.

But first a bit of theory behind this system.

You can imagine the image you scanned as having an orthogonal system of axes with it's origin at any location
convenient for your purpose and as unit one pixel. The graph in this image has another system of axes, with
a possibly other origin, axes that may have a completely different orientation, unit and distribution of units.
The definition of an axis is not about defining the orientation or the units of the axis, because that is done
using the reference points.

The task of describing a system of axes, is to give a translation from the image system to the graph system
and back.

As a relatively simple example, let us consider a system with a logarithmic Y-axis and a linear X-axis.

Let us call the coordinates in the graph system x' and y'.

Then, the definition of the X-axis is simple:

For the Y-axis it is slightly more complicated:

The reverse translations of course read

 and

Once we have these relations, we can define our axes. So, select "edit axes" from the "Axes" menu.

You will see a dialog in which the currently active axes system is shown. Without looking at all those fields, we
create a new system of axes - even though a linear X - logarithmic Y system is already present.

First after the word "Axes" select "*NEW*" (the lowest entry in the pick list).

All values will remain as they where, except for "Name", which is now blank. This is done to facilitate the
creation of similar systems without you having to type all values again.

10

We use this facility now, because the X-axis remains linear. So we change the definition of the Y-axis to

y = ln(y') and y' = e ** y.

Notice that "to the power" is denoted with **.

The rectangle in the upper right corner gives a simple preview of the system you have defined, but will only be
refreshed when you press the "Test" button at the bottom of the window. If you should do so now, the text area
nearly at the bottom of the window would display an error message

This is because the preview area is created using a number of values between "cross y'" and "end y'". The
intersection point of the two axes in the preview will be at cross x' and cross y'. But, as cross y' is still
0, This results in an attempt to take the natural logarithm of 0. Change the value of "cross y'‚" to 1 and
press the "Test" button

Note that the Y-axis in the preview area now has a logarithmic distribution.

You still can not press the Save button, because this system of axes has no name. You must fill in the
Name field, change the Description to some sensible value, press "Test" again and then you can save this
axes system.

Now let us try a more complicated system: polar coordinates.

For polar coordinates, we have to translate an x, y coordinate in the image to an r, ϕ coordinate in the graph.

For our convenience, we picture the origin of the image system at the origin of the graph system.

11

The relations are

The last relation of course only holds when y not equals 0, and the angle is in the first quadrant.

Luckily, there exists a simple function that solves this: it is called atan2, and takes the x and the y coordinate as
its arguments. atan2 returns the correct angle (in radians) for every value of x and y.

So, the entire axes definition for this system looks like

Note that I put the cross r at 100 and the end r at 0, the reverse (a cross r at 0 would result in a very small
circle at best, actually it results in an error, because with r = 0 every value of ϕ translates to [0, 0].

Notice also that I put the names of the graph world axes in the fields behind "Axis 1" and "Axis 2".

In a linear system, you need not worry about the scale of your axis, your X-axis may run from any value
to any value. In Polar coordinates that is not true. In the system described above, ϕ runs from -π to π. You
can not change this using other values in the reference point indicators. If you want another scale for ϕ, you
must define a new system of axes.

Look at the predefined axes for examples.

For a full description of available functions look at Chapter 2.9.8, DTC, DataThief Code, Predefined functions

12

2.3. The trace process

2.3.1. Tracing
DataThief is capable of tracing quite a number of graphs. I must admit that I have also found a number of
graphs that are almost untraceable. Specifically graphs with a relatively thick line and sharp corners are a
source of trouble. For example

traces without problem, whereas exactly the same data, but with a thicker line

stops tracing at the first sharp corner (1, 8), displaying a message "Trace did not reach end point: too many
doubles". Why this is, and what we can do about it is one of the subjects of this chapter.

2.3.2. Fundamentals of tracing
The basis of the trace process is of course defining what to trace. To understand this fully, I shall start with a
brief description of the internals of the trace process.

The trace process is a sequence of decisions "I am at point x with direction v. What is the next point I
shall visit?".

To make this decision, all points in a square with the current point at the center are evaluated. All points that

13

do not match the requested color, and all points that where already used get a rating of 0. All other points
are rated according to 3 criteria:

1. distance to the nearest point that does not match the color.
2. distance to the current point.
3. deviation from the current direction.

These three values result in a rating per point in the square. The best point wins. That will be the next point.
The new direction is the difference between this point and a point further back. This "Further back" depends on
one of the parameters you can set for the trace process.

Because "Direction" is one of the factors in the decision, this version of DataThief is capable of tracing every
more or less continuous line. Relatively small gaps are no issue. Shallow lines are usually easy to trace. Sharp
corners in thick lines are a problem.

So far the background of the trace process. Now to what you can do to make a successful trace.

First of course: take some care in locating the Start- End- and Color indicators. Specifically the Color
indicator's location can make all the difference. The color of a scanned line is usually not uniform. There can
be a lot of difference between pixels. To see precisely which pixels will take part in the trace process, select
the "Settings" tab in the tool bar, and press the button "Show". The black areas in the image area take part in
the trace process. Now change the "Tolerance" value by dragging the slider to the left or the right. When you
release the slider, a new black/white image shows what pixels now take part in the trace process. Pushing the
"Show" button once again, or selecting the "Trace" tab returns the image area to it's normal view.

There are 6 parameters that affect the trace process. You can find these under the "edit >preferences >
trace controls" menu.

Look back affects the number of points used to define the current direction. The bigger the number, the farther
back the point, resulting in more reluctancy to take corners.

Box size affects the size of the square in which to look. A bigger box size allows for bigger gaps to jump, but
can also result in greater computation time and a tendency to jump to other lines in the graph. The number you
give here is just an indication to DataThief. Actually, the real size of the box is determined using this value, the
value of "Look ahead - see following - and the thickness of the line to be scanned.

Look ahead affects the importance of nearness of the next point. The bigger the number, the less important
it is that the next point is near to the current point, but DataThief will have a greater tendency to ignore
intermediate points.

Direction affects the importance of maintaining the last direction (as defined by "Look back"). A bigger number
will result in a reduced tendency to take turns.

Tolerance affects the deviation from the requested color that is allowed. The bigger the number, the more
deviation is allowed.

Center affects the stress that is laid on being near the center of the traced line. With thin lines this has no
effect, but with thicker lines an increased number will steer the traced line more through the center, sometimes
overriding all other aspects, resulting in a U-turn.

Usually the default values (which you can restore using the "Defaults" button) will suffice.

The last item that affects tracing is the way error bars are traced in single point mode. We shall deal with it

14

in the chapter concerning individual points.

All the above parameters affect the way the line is traced. There are also a number of parameters that
affect the way traced points are selected. These can be found under the "Settings" tab, or under "Edit >
preferences > data definition".

The selection of points can be one of

• All points
• Input distance
• Output distance

All points means that no culling is performed.

Input distance requires that you give a number that is interpreted as "pixels" and that you specify how to
measure these pixels: on the primary (X) axis, or on the traced path.

Output distance means that computations to perform culling are performed in the values of the axes. This may
result in undesired results, specifically when the order of magnitude on both axes differ and you request an
output distance measured on the traced path.

It is not possible to request non-linear culling, e.g. on a logarithmic x axis I would want to take a point at every
whole power of 10. This can be simulated though by using Input distance.

When using Output distance on a non-numeric axis - see Chapter 2.5. Definition of output - you will have
to use a translator to translate from your output format to the format used internally by DataThief. Chapter
2.5 will give an example.

2.3.3. Hints
Now we return to the examples that where shown at the beginning of this chapter. Remember the thicker line
failing to trace. The message that is displayed is

This message means that the trace process lost the way, and choose to take a U-turn. Then the process found
too many points it had already visited, hence the message "Too many doubles". You can see that the problem
occurred near coordinate [1, 9]. Of course we could try to modify some of the parameters, notably "Center"
and "Direction" in an attempt to have the trace process succeed. But there is a simpler way.

You can see the point where the trace process lost it's way. At that point we give the process a hint about the
direction to follow from here. To create a hint we need "the Dump".

The dump is the very small window with the small target in it's center. If the dump is not visible, you can make it
visible by selecting "Show dump" from the "Settings" menu.

Once you have a visible dump, you can move the pointer over it. The target sign will turn red. Now you can
drag a circle with a line protruding from it's right side from the dump into your scan. Locate the circle with it's

15

center at the point where DataThief lost it's way. There you release the mouse button. When you move the
mouse pointer over the end point of the line protruding from the circle you have just created, the pointer will
change to a cross line. If you press the left mouse button, you can drag the end point of the line to the point
where you want the trace process to resume. This is a hint. The center of the circle is the start point of the hint,
and the small dot at the end of the line coming out of the circle is the end point of the hint. When the trace
process come in the vicinity of the center of a hint, it is drawn towards it, and once at the center it will jump to
the end of the hint, thus getting a new point and a new direction.

If you do this for the graph in this example, the trace process will fail again at [5, 8]. Create a hint at that point
as well. Now the trace process will fail at [6, 4]. Creating yet another hint results in

And this will trace without any problem.

Notice that indeed all the problems occur at sharp bends in the curve.

Of course, the position of hints can also be of importance, so I advise to use the magnifier.

As it is cumbersome to try to scroll in a magnified image to the next hint - assuming you have more than
one, you can use the buttons "Hint", "Next", and "Prev", to find a hint and move to the next or previous hint
without you having to search for them.

If you save your project in a dtf file, all hints are also saved.

To get a better insight in the trace process, it is possible to follow the process as it proceeds. Keep in mind, that
this is a feature mainly to be used to understand why and where the trace process fails. To allow a reasonable
visibility of the process, no more - though possibly much less - than 10 points per second are traced.

To use this feature, keep the shift button pressed when you start the trace process. On most systems this only
works when you start the trace process using the "trace" button. Using the shift button when selecting the trace
item from the Actions menu does not work

A greenish square will appear with it's center at the current point under assessment.

The following screen shot was taken about 12 seconds after the trace process was started. The fact that
the progress panel shows a number of 159 points, tells us that at least some 40 points were interpolated
rather than found.

16

The lighter green areas are the preferred target points for the next position, the orange "tail" trailing the
center of the rectangle shows the current direction. During this process, you can still scale the image, and
follow the trace process using the scroll bars. Of course you can also still use the "Stop" button to abort
the trace process.

2.4. Individual points
You can switch between Trace mode and Points mode using one of the two buttons:

 Switches to Trace mode

 Switches to Points mode

Or you can toggle between these modes using the "Points mode" item in the "Settings" menu.

If, before switching to Points mode, you had performed a trace, all data from the trace will show as individual
points in Point mode.

In Points mode you can modify points that where the result of a trace, or you can create new points. Also
Points mode allows you to create error bars, or even have DataThief create error bars for you.

Maybe now is the time to define your preferences in mouse clicks. By default DataThief has only one mouse
click defined. That is the way to move points. But DataThief allows you to define your entirely own set of
mouse actions.

This is done using the Edit > Preferences > Mouse click definition - menu item.

17

The six grey areas you see allow you to click with whatever modifiers (Shift, Control, Alt) you like for the
action.

The actions are

• Create new point Add a point in Points mode.
• Drag point Move a point while mouse button is pressed. Both in Points mode and in Trace mode.
• New point + trace Create a new point and try to find it's error bars in Points mode.
• Drag point + trace Move a point and try to adjust it's error bars in Points mode.
• Create error bar Add an error bar to a point, or on a point with symmetric error bars, make the error

bars asymmetric in Points mode.
• Fetch dump If the Dump is hidden, make it visible and move the Dump to the mouse position, both

in Point mode and in Trace mode.

Obviously, some clicks are mutually exclusive. You can not use the same mouse click to fetch the Dump and to
create a new point. DataThief will solve this by setting conflicting actions to "Not set".

You may for instance set Create new point and Drag point to the same click. This will be solved by creating
a new point - in Points mode - when the mouse pointer is not over an existing point. If the pointer is over
a point, that point will be dragged.

DataThief does allow you to set all clicks to "Not set". This obviously makes DataThief rather useless, as
there is no way you can drag the reference location indicators or the Start- Stop or Color location indicators
to their correct locations.

What however even in this situation works, is dragging points from the Dump. The Dump does not look at the
modifiers, and will react to any mouse click.

2.4.1. Error bars
DataThief allows you to create, or trace, error bars in Points mode. Error bars are only possible in the direction
of the secondary axis (the Y-axis).

Error bars come in two flavours: symmetric and asymmetric. Symmetric error bars are of the kind "value plus
or minus Error" whereas asymmetric error bars read like " Value plus Error of minus Other_error".

When you move from Trace mode to Points mode, all points form trace mode are shown as points without error
bars. Also, new points you drag out of the Dump or create using the mouse click action "Create new point" will
be points without error bars. To change a point without error bars to one with symmetric error bars, you drag
the error bar out of the point using the "Create error bar" mouse click action. It does not matter if you drag in
the positive or negative Y-direction; the error bar will extend in both directions. Once the error bar is created,
you may alter it using the Drag point mouse click action.

To change a symmetric error bar to an asymmetric one, drag one of the two bars using the "Create error
bar" mouse click action. It is not possible to change an asymmetric error bar back to a symmetric one, nor
can you change a point with error bars to one without error bars. The only way to achieve this, is to Dump
the point and re-create it.

If the scanned image contains error bars, you can usually automate the process. Consider the following image
(that I deliberately scanned under a slight angle).

18

This is clearly a graph with asymmetric error bars. To automatically obtain there bars, we first have to look
at the one item for the "Trace settings" Preferences that we skipped earlier (see 2.3.2. Fundamentals of
tracing).

Under Edit > Preferences > Trace controls you see a pop up menu allowing you to define how error tracing
is performed. The possible settings are

• No error tracing No automatic error tracing is performed,
• Symmetric error tracing (minimum) Trace symmetric error bars, using the shortest of the positive and

 negative error bar as value for both.
• Symmetric error tracing (average) Trace symmetric error bars using the average value.
• Symmetric error tracing (maximum) Trace symmetric error bars, using the greatest of both values.
• Asymmetric error tracing Trace asymmetric error bars.

Select the last. Place the Color location indicator somewhere on the blue line to define what color to trace.
Then, with the appropriate mouse click, click at the center of any of the points in the graph with error bars.
A new point with two extensions will appear. You can, keeping the mouse button down, move it, and watch
the error bars follow suit. Once you have released the mouse button, you can still modify the point or it's
error bars by using the "Drag point" mouse click, or move and automatically adjust the error bars by applying
the "Drag point + trace" click.

When the data is exported, all points are examined. If there is one point with asymmetric error bars, all points
will be treated as having asymmetric error bars, resulting is four values per point.

If there is no point with asymmetric error bars, but there is at least one point with symmetric error bars, all
points will be treated as having symmetric error bars, resulting in three values per point.

When no point has an error bar, the output will consist of two values per point.

The exact format of the output is user definable. How you can do this is one of the subjects of the next
Chapter.

Error bars can also be applied to x/y dependent axes systems such as Polar coordinates. Due to the inherent
computation-expensive nature of these axes systems and their translations, automatic error bar tracing will not
work. Also, as in the predefined polar coordinate systems the secondary axis is ϕ. As the error bars are drawn
as straight lines from the center of the point outward, these tend to the shape of a V in polar coordinates.

19

2.5. Definition of the output
The format of the file created when you export your data can to some extend be defined by you. Though some
of the values, for instance the precision can be specified in the "Settings"-tab, The complete specification of
your output format is done at Edit > Preferences > Data definition.

Here you may specify the culling of points after a trace. This we have already seen in Chapter 2.3.2.
Fundamentals of tracing.

The next line defines the exact text of your output file.

Each point consists of two, three or four values, depending on the nature of your error bars.

Regardless of your axes definition, these values are called X, Y, E1 and E2 for primary axis, secondary axis,
first error value and second error value respectively.

In the line you see a each of X, Y, E1 and E2 surrounded by text fields. The rule is, that the content of the text
field preceding the name is part of the output if the value corresponding with the name is present.

So, the first two text fields are always part of the output (each point has an X and a Y).

The third field is part of the output if you have error bars, and the fourth field is in the output if the error bars
area asymmetric. The fifth field is always present (though by default it is empty). The last element on the line
allows you to define what character you want at the end of a each point.

Some character can not be inserted in a text field. Specifically a tab will advance the focus to the next text
field, whereas for some data formats a tab is essential as separator between fields. For this reason you can
use the following sequences in these text fields:

sequence inserts

\b backspace
\s space
\t tab
\r carriage return (CR)
\n newline
\\ \
\ddd ddd is one to three octal digits insert the ASCII value of the three octal digits. For instance to insert

a formfeed (octal 012) use \012

Of course, you can create all of them with just the last, but that is not very readable. The \s is also present to
increase readability, though if you prefer it, you can of course use a plain, though almost invisible, space.

So, to create tab separated values where each value is surrounded by quotes (a format that can be read by
most spreadsheets), you could use

20

Notice the quote in the fifth text field. Without error bars, the third and fourth text field are not used, so this
way you will always have the closing quote.

The exported file can have a header. When you export a file, DataThief tries to execute the function

 exportHeader()

If the function exists, it's result is interpreted as string and added at the top of the exported file. By default
exportHeader returns a string containing

 #datathief imagefile name date and time

2.5.1. Translators
Until now we have dealt with numeric axes, but what if we have a graph that looks like

We can of course do a lot of computations assigning 1 to January the first and 365 to December thirty first,
but that is cumbersome and error prone.

What we would like to have is something that translates a date to a number and back, and of course for the
Y-axis something to translate between a time and a number.

DataThief offers two predefined functions:

toDate takes two arguments: a number and a string specifying the format of the date.
fromDate takes two arguments: a string with the date and a string specifying the format.

Some of the elements that can be part of the format are

d day of the month (one or two digits)
MMM name of the month (three letters)
yyyy year (four digits)

21

h hour (one or two digits)
mm minute (two digits)
ss seconds (two digits)

A full list is given in Chapter 9.2.8.3.

With these we can make the functionality we like: for each value v on the X-axis we have

date = toDate(v, "d-MMM")

and it's reverse action is

v = toDate(date, "d-MMM")

and equally for the Y-axis

time = toDate(v, "h:mm")

and reverse

v = fromDate(time, "h;mm")

Ok, we can translate from date and time to numbers and back, but what can we do with it?

Use Edit > Preferences > Translators

Here you can define translators.

A Translator is a set of two expressions that define the relation between a number and a "something". The
"something" is a string. "Trans" converts the value, which is always called "v", to the "something" and "reverse"
converts this "something", which is also called "v", back to the number. So the simplest Translator (called
none") consists of Trans = v and Reverse = v. There is a catch though. If the result of Trans is numeric,
DataThief's number formatter, using the precision you can set in the "Settings" tab is applied. If the result
of Trans is a string, this will not happen. So to get unformatted numbers, you can apply a Translator with
Trans = (string)v and Reverse = v.

To make it formal:

Trans gets a parameter v that is a string. The result of trans must be a number, or a string that evaluates to a
number (So actually the string "2 + 3" is a valid result of Trans).

Reverse gets a float as parameter. If the result of Reverse is a string, no further formatting is applied. If
the result of Reverse is an integer of float, DataThief's standard formatter (format(v, "g", -precision()) is still
applied.

 In the example above the translator for date is already entered. To add it to the list of translators press the
"Set" button. The name "date" will appear in the pull-down menu. Now you can enter the definition for the
time translator and again press "Set".

If you make an error in the definition of the functions, this will be reported in the gray area and the definition
is not saved.

Once you have these translators defined, they are part of your DataThief environment until you decide to
delete them, so you will not have to define them again.

Deleting a Translator is done by selecting the translator in the pull-down menu, pressing the "Delete" button
and confirming that you want to delete the Translator.

22

Now return to the "Data definition" tab of preferences (select it from the pull-down menu on top of this
window).

After the word x-translator select "date" (because you have defined a translator with the name date, it will
appear here). After y-translator select "time".

The click "OK". It is time to define a system with non numeric data. You will probably have an error message
reading "Date does not match (d-MMM)". Don't let that bother you. It really means you have not yet filled in the
correct values that belong to these translators. If you have entered the correct values for your system of axes -
and of course located the various locators your system should look like

Of course you can trace this graph, but what if we would like to have a data point about every fourthnight.
Problem is that we do not know the number of pixels to specify, nor do we know the number to specify
as output distance (we can not just say "1-jan" nor regretfully 15-jan - 1-jan). The latter though is not far
from what we can do. First, to make things easier, let us define the number corresponding to one day,
and because we might want to use that number more than once, we shall make it a constant. So Edit >
Preferences > Constants

23

In this example the definition of "day" is already filled in (as the differences between 2 January and 1
January).

Click "Set" followed by "OK"

Now under the "Settings" tab you can specify

 Output distance 14 * day on the primary axis

Trace the graph and enter Points mode.

If you export the data, the translated values will be written out, so one line could read:

 "10-sep", "6:11"

2.6. Profiles
By default DataThief starts up with the settings as they were the last time DataThief was quit. That means that,
once you have opened and image, all the settings were as you left them the last time.

This is not always desirable. It is quite possible that you have some graphs that have similar settings. To
facilitate the processing hereof, it is possible to save all settings into a profile. When these specific settings - or
setting rather similar to them - are needed, you van fetch them back by name.

24

To save a profile, you first set it up, meaning that you take care that all settings are as you would like them in
the profile. Once that is done, you enter the profile manager: Profiles > edit profiles.

Because there are initially no profiles defined, the options to change, rename or remove a profile are not
available. The only option you have is to save the current settings into a new profile. If you click "Save in
another profile", the content of the profile editor changes to

Again, because no profiles are defined, the drop down menu is empty. All you can do is type in the name you
wish to give this profile, then click "Save".

Now, the options to rename, renew or delete a profile will also be available.

DataThief has one profile that is not visible in this dialog: The settings when you last quit DataThief. By default
these are the settings with which DataThief starts up, but under Edit > Preferences >General, you can select a
defined profile to use when DataThief starts up.

2.7. Preferences
Most of the possible settings of DataThief have already been covered. In this chapter we will nevertheless
cover all of them again.

You can enter a specific preference panel by selecting the sub menu from the preferences item under the
Edit menu.

Once in the Preferences panel, you can step through all preferences panels using the up and down arrows
in the upper part of the window, or you can go directly to a specific panel using the drop down menu in the
upper part of the window. With some exceptions, which will be explained with the appropriate panel, all settings
will only be effectuated after you click the "OK" button at the bottom of the window. So, you may change
colors, trace parameters, mouse clicks and data definition settings, than click the "Cancel" button and none
of the changes will become effective.

2.7.1. General

In this panel you can set the profile to use when DataThief starts up, and you can set the colors for indicators.

25

With Start, End and Color you set the color of the Start- End- and Color indicators. With Ref# you set the
color of a reference indicator. Trace defines the color of the traced line in Trace mode. Point sets the color
of a point in Points mode. Hint sets the color of a Hint in Trace mode. Background defines the background
color of the coordinate values shown next to a point in Point mode and Values defines the color of the text
of those values.

2.7.2. Mouse click definition

This panel allows you to configure your own preferences in mouse clicks. By default only "Drag point" is set
to a (left) mouse click + drag.

You can define the clicks by clicking a mouse button, with your preference of modifiers keys (Shift, Control, Alt)
pressed, in the gray area behind the text specifying the kind of action.

Create new point and Drag point may have the same click.

New point + trace and Drag point + trace may have the same click.

All other clicks must be different.

To clear a click action, click in the gray area with the same click as it has currently defined.

2.7.3. Data definition

Here you specify which points to select after a trace, and the format to show and exports points.

Selection of points after a trace can be based upon distances measured in pixels (Input distance) or in terms
of output coordinates(Output distance). The distance can be given as a number, or as an expression. Hence
it is permitted to request an output distance of 2 * pi (provided pi is a defined value). The way distances are
measured can be one of "On the primary axis" (usually the X-axis) or "On the traced path" meaning that
distances are added until the requested value is exceeded.

26

The format of the text in files with exported data is defined in the next line. The order of data is always

 value om primary axis, value on secondary axis, first error value, second error value

The error values are always positive. So a line reading

 5.6, 3.5, 1.2, 0.7

can be interpreted as x-coordinate 5.6, Y-coordinate 3.5 with an error range between 3.5 + 1.2 and 3.5 - 0.7

If only one error value is given, you are dealing with symmetric error bars, so a line reading

 5.6, 3.5, 1.2

can be interpreted as X-coordinate 5.6 Y-coordinate 3.5 ± 1.2.

With only two values, you are dealing with data without error bars.

The formatting of the data is defined by the text fields surrounding the fixed parts of the exported data.

If a specific value is present in the exported data, then the content of the text field preceding it will be shown as
well. The last two fields of the line are also always present.

2.7.4. Trace controls

Here you define the parameter that affect the trace process.

Look back affects the number of points used to define the current direction. The bigger the number, the farther
back the point, resulting in more reluctancy to take corners.

Box size affects the size of the square in which to look. A bigger box size allows for bigger gaps to jump, but
can also result in greater computation time and a tendency to jump to other lines in the graph. The number you
give here is just an indication to DataThief. Actually, the real size of the box is determined using this value, the
value of "Look ahead - see following - and the thickness of the line to be scanned.

Look ahead affects the importance of nearness of the next point. The bigger the number, the less important
it is that the next point is near to the current point, but DataThief will have a greater tendency to ignore
intermediate points.

Direction affects the importance of maintaining the last direction (as defined by "Look back"). A bigger number
will result in a reduced tendency to take turns.

Tolerance affects the deviation from the requested color that is allowed. The bigger the number, the more
deviation is allowed.

Center affects the stress that is laid on being near the center of the traced line. With thin lines this has no
effect, but with thicker lines an increased number will steer the traced line more through the center, sometimes
overriding all other aspects, resulting in a U-turn.

The last item is a pop up menu allowing you to define how error bar tracing in Points mode is performed.
The possible settings are

• No error tracing No automatic error tracing is performed,
• Symmetric error tracing (minimum) Trace symmetric error bars, using the shortest of the positive and

27

 negative error bar as value for both.
• Symmetric error tracing (average) Trace symmetric error bars using the average value.
• Symmetric error tracing (maximum) Trace symmetric error bars, using the greatest of both values.
• Asymmetric error tracing Trace asymmetric error bars.

2.7.5. Constants

In this panel you can define Constant values for DataThief. Constants may seem a little misleading, as it
is possible to define the constant is rather dynamic terms (such as "the current time"). But, once the value
is defined, it will stay fixed until it is redefined. (With a constant defined as "the current time" that is until
you start DataThief again).

To use more volatile values, you can define a function. See the next chapter.

You define a constant by typing it's name in the text field after the word Constant, and it's value after the =
sign. If you type the name of a constant that is already defined, you alter the value of that defined constant.
The names of constants are case sensitive, hence PI and pi are different constants. To inspect (or change) the
value of a constant, you select the name of the constant from the drop down menu, or you type the name of
the constant in the text field after the word Constant.

The gray text area is used to display error messages in the definition of you constant.

Beware, that the changes become effective only after you press the "Set" button. Also be aware, that constants
are define apart from clicking the "OK" button. Hence, you can make changes in the definitions of your
constants and then click "Cancel", but the changes you made in the constants will not be cancelled.

To remove the definition of a constant, select the name of the constant from the drop down menu, or type
the name of the constant in the text field after the word Constant, then press the "Delete" button. You will be
asked confirmation. If you confirm that you want the constant removed, it is removed. Later applying Cancel
will not bring the constant back.

28

2.7.6. Functions

In this panel you can define any function you need. Most common use will be to define a function you need
to specify a translator, or as part of the computations for a system of axes, but there are some functions
with a special meaning.

The definition of a function is DataThief is much like defining a function in C or JavaScript. Basically a function
definition is always

function name(parameterlist)
{
 // function body
}

The result of the function can be specified using "return". A function may contain more than one return
statements. If the function reaches the end of it's body without encountering a return statement, the result
of the function is undefined.

A definition for a function returning the absolute value of it's one parameter could be

function abs(n)
{
 if(n < 0)
 return -n;
 return n;
}

Though this can also be written as

function abs(n)
{
 return n < 0 ? -n : n;
}

For a full description of how to define functions, see chapter 2.9. DTC, Datathief Code.

Functions are automatically formatted. You have little choice in the result of formatting: indentation is always 4
spaces. comments always start on a new line, as does each statement. You can however choose the position
of the curly braces that surround function bodies and compound statements. I prefer a style that uses lots
of newlines, but puts the open and the close brace on the same horizontal position. The for anyone who
knows C familiar - "Kernighan & Ritchie-style" (K&R-style) is more compact. You can choose between the
two with the K&R-style check box.

To define a function, type it's definition into the central text area and click "Set". If you made a syntactical error
in the function definition, the error message will be displayed in the gray text area and the function will not be
defined. When no errors are found, the function is defined and added to the list of functions.

To change the definition of a function, select the name of the function from the drop down menu. The function
definition will appear in the text area. You can change the definition then click "Set". Alternatively, you can just
type the entire definition into the text area and type set. If you define a function with a name that already exists,
the older function definition is overridden.

29

To delete a function definition, select the name of the function from the drop down menu, click "Delete", and
click "OK" in the window that requests confirmation.

Be aware, that function definitions are set immediately, hence deleting a function, than regretting it and clicking
"Cancel" will not bring the function back!

2.8. Menus
This chapter will give an overview of the menu structure of DataThief.

2.8.1. File
Open... Allows you to open a file. Files are treated differently, depending on the file's exten-

sion:
 A file with the extension .dtf will be treated as a DataThief file, the result of a previous

"Save".
 A File with the extension .dtc will be treated as a DataThief Code file. Global variable

definitions will be added to the list of constants, and function definitions will be added
to the list of functions.

 All other files are treated as files with graphical data. If DataThief is unable to convert
the data to an image, an error message will be displayed.

Save Save the current image with all it's settings in the current .dtf file. If you had not
opened a .dtf file, but an image file. This results in the same action as "Save as...".

Save as... Save the current image with all it's settings into a new .dtf file. You will be asked to
enter the directory and the name of the file. If the file name does not have the correct
extension. ".dtf" will be appended to the file name.

Export data Save the collected data into a file. DataThief will ask for the directory and the name
of the file. You must give the file an appropriate extension. DataThief will not give
the file an extension, though it will suggest as file name the name of the current
image with ".txt" as extension.

 The data will be saved in the format as defined by the settings in Edit > Preferences
>Data definition.

Quit This terminates DataThief. The current settings are saved in your preferences file, to
be reused if you have declared In your Preferences that you wish DataThief to start
up with the last settings.

2.8.2. Edit
Cut, Copy and Paste These are not used in DataThief.
Preferences Allows you to define your preferences. See Chapter 2.7.

2.8.3. Axis
This menu contains a list of all defined axes systems. As the list id ordered alphabetically, I suggest that you
give you axes systems names that start with a number that allows you define the order. (See the predefined
axes systems that come with DataThief). The last item of the menu is:

Edit Axes Allows you to change, add or delete axes systems See chapter 2.2.

2.8.4. Profiles
This menu contains a list of all profiles you have saved. The menu is sorted alphabetically. The last item is:

Edit profiles This shows a window allowing you to add or remove profiles. See chapter 2.6.

2.8.5. Settings
This menu contains items that modify the things you see in DataThief.

Show tool bar The tool bar is the upper part of the DataThief window, containing the Reference
point indicators, the zoom buttons et cetera. Once you have defined your system,
you do not really need to see it, so you can use this menu item to hide or show

30

the tool bar.
Show indicators Once you have defined your system, the location indicators can work confusing. This

menu item allows you to show or hide all location indicators. Note, that when the
location indicators are hidden, the point indicators are disabled.

Show dump This menu item allows you to show or hide the dump.
Values on MouseOver This menu item affects the way values of points and location indicators are shown. If

this item is checked, the coordinate values of a point are only visible when you move
the mouse pointer over the point or indicator. If the item is not checked, all points and
indicators show their coordinate values continuously.

Points mode This menu item switches between Trace mode and Points mode.
4Point ref This menu item allows you to select between the standard 3 reference points each

with a coordinate both on the primary - and on the secondary axis, and the 4
reference point mode, where two reference points only define a Y-coordinate and the
other two only define an X-coordinate.

2.8.6. Action
Zoom out Zooms a factor 2 out of the image.
Zoom in Zooms a factor 2 into the image.
Trace Trace the current line (See chapter 2.3).
Reset Move the location indicators to their default positions.
Enter key This option is only present when you have not yet paid your shareware fee. When

you pay your shareware fee, you receive a key to unlock all features. You can use this
menu item to get a dialog where you can enter the key.

2.8.7. Data
Previous point Show the previous point (in Point mode)
Previous hint Show the previous hint (in Trace mode)
Current point Show the current point (in Point mode)
Current hint Show the current hint (in Trace mode)
Next point Show the next point (in Point mode)
Next hint Show the next hint (in Trace mode)

These items allow you the step quickly through all points or hints in your graph. The order that defines what
is "Previous" or "Next" is defined by the order you entered points, or by the Trace process. To decrease
the possibility of RSI, these items can also be selected by simple key clicks: p for Previous, n for Next and
period for the current point or hint. It may be that you first have to click in the image area of DataThief for
these key click to work.

Clear data This item removes the traced line in Trace mode, or all points in Point mode.
Clear hints This menu item removes all hints in Trace mode.

2.8.8. Help
About DataThief Shows DataThief's About dialog

2.9. DTC, DataThief Code

2.9.1. Introduction
DataThief Code is a simple language that allows you to define almost any conversion you need that is not
predefined in DataThief.

The language takes many elements from C and from JavaScript, but is certainly not intended as a general
purpose tool. It is intended as a tool to allow you to create functions to facilitate the definition of a system
of axes, and to define data translators.

31

2.9.2. Lexical structure
DTC is case sensitive. Hence "while" is a keyword, en "While" is not. The predefined function sin() can not
be invoked with "SIN(1.2)".

DTC is parsed using a "longest match first" method. This means that in ambiguous situations, the possibility
with the most matching characters is used. As an example:

DTC has an increment operator ++ that can be applied to a variable. a++ means "set the value of a to a+1.

DTC has a + operator that take two values or variables as operand. a + 1 means exactly what you would
think.

But combining these two, it is correct DTC to write a+++b

DTC will interpret this as a++ + b and not as a + ++b which is also correct DTC.

Of course it is advised not to rely on this behavior; it makes your code difficult to read and error prone.

Any text between // and the end of a line is DTC comment, and is ignored.

An identifier is the name of a variable of function in DTC. As in JavaScript or C, DTC identifiers must begin
with an upper- or lower case letter or and underscore (_). Subsequent characters may be letters, digits or
underscores. There are a number of reserved words that fulfill this definition, but nevertheless cannot be used
as identifier. These words are

array break case catch char continue default else float for function if int local
return sizeof string switch try typeof while

2.9.3. Data types
DTC supports integer numbers, floating point numbers, strings, characters and arrays.

Each of these will be discussed in the rest of this chapter.

2.9.3.1. Integer
An integer, int for short, is a signed whole number with a value in the range of -9223372036854775808 and
9223372036854775807. Arithmetic operations that exceed these limits will generate an error condition.

Integer literals are sequences of digits. For example

0
7
13684

You can specify hexadecimal integer literals by preceding the sequence by 0x or 0X. The subsequent
sequence may also contain the letters from a to f or from A to F to denote the hexadecimal values from 10 to
15. Hence to denote the decimal value 110 in hexadecimal you may write

0x6e

An octal denotation of an integer is specified when you precede the integer literal by 0. Hence

035

is 29 in decimal.

To specify a negative integer you may precede the integer literal by a minus sign (-). But, as the minus is
not part of the literal, but is a unary operator, white space between the minus sign and the integer literal
is allowed.

As a minus sign is interpreted as unary operator, the number -9223372036854775808 can not be expressed
as a literal integer because the positive value 9223372036854775808 can not exist. In the rare event that you
need this literal value you can use the hexadecimal equivalent 0x8000000000000000.

2.9.3.2. Float
A floating point number, float for short, is a number that may have a decimal point, and an exponent part.
Floats are written the same way as in C and JavaScript: an optional integer part, an optional decimal point,
an optional fraction, and an optional exponent part consisting of a lower or upper case E followed by a signed
integer. Valid floats are:

32

1.
.1
53.954
4e2
1345.5e12
1.602189E-19

As with integers, floats can be made negative using the unary minus operator.

2.9.3.3. String
A string is a sequence of characters. Unlike in C, a DTC string is not zero terminated. A string can contain
a character with the value 0.

A literal string is any sequence of characters except newline enclosed by double quotes ("). Like C and
JavaScript, certain characters can be escaped within a literal string. This is done by preceding the escaped
character by a backslash (\). The meaning of escaped characters is:

 \b backspace

 \n newline

 \r return

 \\ backslash

 \" "

 \### where ### one to three octal digits: the ASCII character corresponding to the digits

 \c where c is any other character: the character as if no \ was present

Valid string literals are

"Hello world"
"quote \" "
"\102 is B" (this is equivalent to "B is B")

2.9.3.4. Characters
A character is an integer with very limited range: the value of a character is between 0 and 255. At the
same time, a character can be seen as a string containing only one character. When a character takes part
in an expression it is silently converted to an integer or a string, depending upon context, but basically, for
expressions a charatcer is an integer. A character literal is the required character surrounded by single quotes
'. You can use the same escape sequences as in strings.

Examples of character literals:

'a'
'\r'
'\040'

'\''

2.9.3.5. Array
An array is a list of values that can be accessed through an index. Arrays in DTC always begin at index 0.

Array cells can contain any type of value, so it is well possible that one array contain integers, strings and
even arrays.

Arrays are sparsely filled. This means that cells that have not been given a value, nor have been inspected,
have no value attached. If you inspect the cell without giving it a value, the cell is filled with the integer
value 0.

A literal array is a comma separate list of values surrounded by square brackets. For example

[1, 1, 2, 3, 5, 8, 13
[1, 3.14, "one", [1, 2, 3]]

Array cells are accessed by giving the array followed by the index (counting from 0) of the cell surrounded

33

by square brackets.

Hence the result of

[1, 1, 2, 3, 5, 8, 13][5]
is 8.

The values of a literal array may actually be expressions containing variables, but the value must be defined at
the moment the literal array is parsed. As a result the construction

for(i = 0; i < 5; i++) { a = [i] ...

Will raise an error "i not defined" because the literal array [i] is parsed before the for loop that defines it is
executed. A simple work around uses [] to define an empty array

for(i = 0; i < 5; i++) { a = []; a[0] = i ...

The same construction can be used to create an array that can be sparsely filled.

An example of the use of sparsely filled arrays is

a = []; // create an empty array
a[10] = 1;
a[100] = 1;

Now the array attached to the variable a has a length of 101, but contains only two values.

 b = a[50];

After this statement, the array still has a length of 101, but now it contains three values, because examining the
51st element has created a value of 0 into the cell.

2.9.4. Variables
A variable is an identifier, that is associated with a value. In DTC variables are created by giving them a
value. For example

 pi = 3.141592653589793;

Creates a variable called pi and gives it a value that is a reasonable approximation of π.
If later on in the code defies all known mathematics by stating

 pi = 3;

The value of the variable pi is changed. In paragraph 2.9.7.3 we shall see that it is possible for several
variables with the same name to co-exist.

2.9.5. Expressions and operators

2.9.5.1. Expressions
An expression is a piece of code that eventually produces a value. The simplest expression is just a value:

5

More complex expressions combine simple expressions. For example

5 + 7.5

which of course results in a floating point value of 12.5.

The type of the result of an expression depends on the operator and it's operands. In the example above the
operator plus with an integer left operand and a float right operand results in a float. Whereas applying the plus
operand to two integer operands would yield an integer result.

2.9.5.2. Operator overview
The way an operator works is defined by it's precedence, it's associativity, the number of operands and it's
operation.

Precedence defines how grouping of operators takes place. For instance the expression

2 + 3 * 5

groups as

34

2 + (3 * 5)

because * has a greater precedence than +.

Associativity defines the order of evaluation of operators of the same precedence. Associativity can de Left-to-
right of Right-to-left. Normal associativity is Left-to-right. For instance

2 - 3 + 5

groups as

(2 - 3) + 5

because + and - have the same precedence and are both Left-to-right associative.

Whereas

a = b = 3

results in both a and b getting the value of 3 because = is Right-to-left associative.

You can force grouping using brackets. Hence (2 + 3) * 5 yields 25.

DTC has three kinds of operators:

unary operators, that have only one operand. For instance the negation operator -, when used in - 3.

binary operators that have two operands, such as the addition operator in 2 + 3.

There is one ternary operator ?: which combines three operands into one expression.

2.9.55.3. Unary operators

All unary operators have the same precedence and group from left-to-right.
- unary minus Can be applied to an integer (remember that chars can be used wherever an interger

is expected) or a float. The result is the same type with the value negated.
! logical not Can be applied to an integer or float. The result is an integer. 1 if the operand was 0, 0

for all other values of the operand.
~ bitwise not Can be applied to an integer. Returns an integer with each bit negated.
++ pre increment Can be applied to a variable containing an integer or a float. The contents of the

variable is replaced with it's value + 1. This new value is also the result of the
operator.

 pre increment means that the operator is put before the identifier. For example
 ++val
++ post increment Can be applied to a variable containing an integer or a float. The contents of the

variable is replaced with it's value + 1. The result of the operator is the old value of
the operand. For example

 val = 5;
 prod = 2 * val++;
 has as result that the variable prod has the value 10 and val now has value 6;
-- pre increment Can be applied to a variable containing an integer or a float. The value of the variable

is decreased by one. The new value is returned.
-- post decrement Can be applied to a variable containing an integer of a float. The value of the variable

is decreased by one. The old value of the variable is returned.
sizeof Can be applied to any type. The result it the number of elements of the operand.

Hence for integer and float operands the result is 1. For a string the number of
characters in the string is returned and for an array the size of the array; For instance

 row = [];
 row[12] = 1;
 a = sizeof row;
 results in a having the value 13. Whereas
 row = [1, 1, 2, 3, 5, 8, 13];
 a = sizeof row;
 results in a containing 7.
typeof Can be applied to any operand. The result is a string containing "int", "float", "char",

"string" or "array".
(type) The cast changes the type of it's operand. The cast consists of the name of the

target type surrounded by brackets. When you cast an integer to char, the number is

35

truncated silently to the range of 0 to 255. When you cast a float to integer of char,
the integer part of the number is taken and silently truncated to fit the target type.
You can cast integers and floats to a string, resulting in a string containing the literal
representation of the number. If you cast a character to a string, you get a string
containing one character. An array can only be cast to array (this does nothing but
consumes processing power). Examples of casts:

 (float)1 // => 1.0
 (int)1.4 // => 1
 (int)1.9 // => 1
 (char)102 // => 'f'
 (string)'f' // => "f"
 (string)102 // => "102"

2.9.5.4. Binary operators

The precedence of binary operators is
[] subscript
** to the power
*, /, % multiply, divide, modulo
+, - add, subtract
<<. >>, >>> shift left, shift right, shift right zero fill
<. <=, >, >= less than, less than or equal, greater than, greater than or equal
==, != equals, not equals
& bitwise and
^ bitwise exclusive or
| bitwise or
&& logical and
|| logical or
.. slice

These all group left-to-right.

Assignment operators all group right-to-left and have the same precedence.

.. slice
A slice can only be used within a subscript (see the next paragraph). Left and right hand operand of the slice
must be integer values. The final result of the slice must be such, that the right hand operand is not smaller
than the left hand operand, but each of the operands may be negative, indicating that the operand is added to
the size of the array or string that is subscripted. See the next paragraph for examples.

[] subscript
The subscript is a slightly weird operator. It is the only operator that has a part of the operator right of the
right operand. But it reads quite naturally.

The left hand side of the subscript is an array or a string. The right hand side is a character or a slice (see
the previous paragraph)

If the right hand side operand is a slice, the result of the subscript is the same type as the left hand side
operand, i.e. a slice from an array is an array and a slice from a string is a string.

If the right hand side operand is an integer, the result is the type of the cell that is taken for in array, and the
result is char for strings. This char's value is the ASCII value of the character taken from the string. For arrays
the result of an integer subscript is the value and the type of the designated cell.

For example:

a = [2, 3, 5, 7, 11, 13, 17, 19, 23];
a[3] => 7
a[3..3] => [7]
a[3..5] => [7, 11, 13]
a[3..-3] => [7, 11, 13, 17]
w = "abcdefghi";
w[3] => 'd'

36

w[3..3] => "d"
w[3..5] => "def"
w[3..-3] => "defg"

w[-3..-1] => "ghi"

Note, that because the slice operator has a very low precedence, constructions like

w[i .. i + 2]

will indeed take a slice of three elements from the ith element.

** to the power
Operands can be float or integer. The result is always a float. Be aware that this operator may raise an error
condition. For example -2 ** .5 would attempt to take the square root of -2.

* times
Operands can be float or integer. The result is integer if both operands are integer, otherwise the result is
float. If both operands are integer an error condition "integer overflow" can occur when the result exceeds
the possible values for integers.

/ divide
Operands can be float or integer. When both operands are integer, the result is an integer with as value the
whole part of the division. E.g. 18 / 5 results in 3 whereas 18.0 / 5 has 3.4 as result.

% modulo
Both operands must be integer. The result is the remainder of the division of the right hand operand by
the left hand operand.

For example

18 % 5 => 3
-18 % 5 => -3

+ addition
When both operands are integer, the result is an integer. When both operands are integer of float, the result
is a float.

String + string results in a string where both strings are concatenated.

String and numbers can be added. The number is first converted to a string.

Finally, two arrays can be added, resulting in an array with all elements of both arrays

Examples:

2 + 3.4 => 5.4
2 + "ok" => "2ok"
"ok" + 2 => "ok2"
"a" + "b" => "ab"
[1, 2] + [3, 4, 5] => [1, 2, 3, 4, 5]

Sparsely filled array that are added will result in a new sparsely filled array.

- subtraction
Operands may be integer or float. The result is integer when both operands are integer. Otherwise the result
is float.

<< shift left
Both operands must be integer. The result is the bit pattern of the left operand binary left shifted by the number
given by the right operand. For example

5 << 2 => 20 (5 is 101, 20 is 10100)

>> shift right
Both operands must be integer. The result is the bit pattern of the left operand binary right shifted by the
number given by the right operand. Following the previous example

20 >> 2 => 5

37

but

-1 >> 2 -> -1

This is because the left most bit of -1 is a 1 (actually all bits of minus 1 are 1). As the >> operator replicates the
left most bit (and discards the right most bit) shifting -1 right results in -1.

 >>> shift right zero fill
As shift right, but in stead of replicating the right most bit, the right most bit is set to 0; This is equivalent
to an unsigned right shift.

< less than, <= less than or equal, > greater than, >= greater than or equal, == equals, != not equals
Operands can be any combination of float, integer and string. If one of the operands is string, the other
is converted to a string and the comparison is alphabetically lexicographic. For integers and floats the
comparison is numeric. The result is integer 1 if the comparison yields true, integer 0 otherwise. Examples:

1 < 2.0 => 1
"1" < "2" => 1
11 < 101 => 1
11 < "101" => 0 ("11" comes lexically after "101")

& bitwise and
Both operands must be integer. The result is an integer that has a 1 bit where both operands had a 1 bit, and a
0 bit where at least one of the operands had a 0 bit. Take for example

0xa9 & 0x27

0xa9 = 1010 1001
0x27 = 0010 0111
result 0010 0001

^ bitwise exclusive or
Both operands must be integer. The result is an integer that has a 1 bit where both operands had non
matching bits, and a 0 bit where at both operands had equal bits. Take for example

0xa9 ^ 0x27

0xa9 = 1010 1001
0x27 = 0010 0111
result 1000 1110

| bitwise or
Both operands must be integer. The result is an integer that has a 0 bit where both operands had a 0 bit, and a
1 bit where at least one of the operands had a 1 bit. Take for example

0xa9 | 0x27

0xa9 = 1010 1001
0x27 = 0010 0111
result 1010 1111

&& logical and
Operands can be integer or float. The result is an integer 1 if both operands are unequal to 0. If either
operand is 0, the result is 0. It is guaranteed that the second operand is not evaluated if the first operand
equals 0. So the effect of

a = 1;
c = 0;
c && a++;

is that a holds it's value of 1; the a++ is not performed.

|| logical or
Operands can be integer or float. The result is an integer 1 if either operands is unequal to 0. If both operand
are 0, the result is 0. It is guaranteed that the second operand is not evaluated if the first operand does
not equal 0.

38

Assignment operators
The primary assignment operator is =.

= is both used to declare a variable, and to modify the value of an existing variable.

Because assignment operators group right to left, it is possible (though not very readable) to state

a = 4 + b = 7;

which is equivalent to

b = 7;
a = 4 + b;

All other assignment operators are of the type "ue and assign". They are all written as the operator to be used
immediately followed by an = followed by the second operand. The result is that the operator is applied to
both operands and the result is stored in the left hand operand, which must be a variable. Take for example
the "added by" +=.

a = 3;
a += 4;

results in a having a value of 7.

As these operators evaluate right to left, it is possible to write

a = 3;
b = 4;
a += b += 5;

Which is equivalent to

a = 3;
b = 4;
b += 5;
a += b;

The following use and assign operators exist

*= /= %= += -= <<= >>= >>>= &= ^= |=

The left hand side operand of an assignment operator can be a subscription. So it is valid to write

s = "abc";
s[1] = 'x'; // s now contains "axc"
s[0]++; // now s is "bxc";
r = [2, 3, 5, 7, 9];
r[1] += 5;

2.9.5.5. Ternary operators
There is one ternary operator. This functions as an in line if statement, The operator looks like

condition ? truevalue : falsevalue

Condition can be integer of float. truevalue and falsevalue can be any type, and need not even be of the
same type. As the precedence of the ? : operator is very low (just above the level of assignment operators)
you will often need brackets to obtain the desired result. For example to match the singular or plural to
count you could write

"I have " + count + (count == 1 ? " egg" : " eggs")

or

"I have " + count + " egg" + (count == 1 ? "" : "s");

But if you forget the brackets, the result is the string "s", because this groups as

(("I have " + count + "egg" + count) == 1) ? "" : "s";

2.9.6. Statements
Statements are the sentences of DTC. Most statements in DTC end with a semicolon.

39

2.9.6.1 Simple statements
The simplest statement that DTC knows is the "empty statement"

;

It does absolutely nothing (which is sometimes what you want).

Then, every expression is a simple statement (even when the expression is not simple at all).

2.9.6.2. Compound statements
A compound statement is a group of statements surrounded by curly braces {}. A compound statement can be
used where DTC requires simple statement and you need more than a simple statement.

Compound statements do not end with a semicolon.

2.9.6.3. If, else
The if statement allows you to choose between alternatives. The form of an if statement is

if(condition) statement else statement

As it frequently happens that you do not require the else statement part, you may omit the else ;

So a short form of the if statement is

if(condition) statement

The brackets around the condition are required.

Examples of if statements are

if(n < 0) n = -n;

which implements a simple absolute value.

sign = 1;
if(n < 0)
{
 n = -n;
 sign = -1;
}

which does the same, but remembers the original sign. Note the use of a compound statement.

if(n < 2)
 plural = 0;
else
 plural = 1;

This looks maybe a bit like the example used with the ?: operator, but remember that the if statement does
not have a result, so you can not write

a = if(n < 1} "x"; else "y";

This will result in an error message "Illegal statement".

2.9.6.4. Switch
If you need to choose out of more than two options, you can use the switch statement.

The syntax of the switch statement is:

switch(expression) statement

But you will actually always need a compound statement.

One of the statements you can use within a switch statement is a case label.

The case label looks like

case expression:
When a switch statement is encountered, the value of the expression of the statement is computed. Then
the (compound) statement is searched for a case label with an expression that evaluates to the same value.
All statements following that case label are executed until the end of the compound statement or until a

40

break statement.

A break statement is

break;

If no matching case label is found, but there is a default label in the compound statement

 default:

execution resumes at the default label again until the end of the compound statement, or until a break
statement.

Note that encountering another case label or default label does not interrupt the execution of statements.

A simple example:

switch(v)
{
 case 0:
 s = "zero";
 break;
 case 1:
 s = "one";
 break;
 case 2:
 s = "two";
 break;
 default:
 s = "???";
}

It is possible to combine several conditions within one action, or have a condition use only a part of an
action as in

switch(value)
{
 case 1:
 s = "ok";
 case "2":
 case 3:
 b = 4;
 break;
 default:
 b = 10;
}

In this example, the statement b = 4; is performed when value equals 1, "2" or 3. s = "ok" is only
performed when value equals 1. Note the mixed use of types in the case labels. The test performed to match
case labels is the same as for the == operator, meaning that if either operand is string, the other operand
is converted to string, so actually we could also have written case 2:. It is allowed, though not useful to
have more labels with the same value, or more default labels. program execution is started at teh first label
that matches expression, or at the fist default label, and continues unti the end of the compund statement
or until a break statement.

2.9.6.5. While
The while statement allows you to repeat actions. The form of a while statement is

while(condition) statement
The statement, that is usually a compound statement and called the body of the loop, will be repeated as long
as condition yields a result not equal to 0. For example

count = 0;
sum = 0
while(count < 10)
{

41

 sum += count++;
}

Will leave the value of sum at 55 and the value of count at 10. Note the use of the post-increment operator.

It is possible to leave the while statement somewhere in the middle of the body. The statement break allows
you to jump out of the while statement. For example

count = 0;
result = 0;
while(count < 100)
{
 result += ++count;
 if(result > 100)
 {
 break;
 }
 result++
}

will end when count equals 100 or result is greater than 100 whatever comes first.

The break statement jumps only out of one while loop, so when you have nested while statements as in

i = 0;
while(i < 10)
{
 j = 0;
 while(j < 10)
 {
 if(i > j)
 {
 break;
 }
 }
 // execution resumes here after the break
}

It is also possible to jump immediately back to the test of the condition without executing the rest of the body
of the loop. This is done with the continue statement. As with the break statement, continue only affects
the innermost while statement.

count = 0;
result = 0;
while(count < 100)
{
 result += ++count;
 if(result > 100)
 {
 continue;
 }
 result++
}

will not perform the result++ once result exceeds 100.

2.9.6.6. For
The basic structure of a while loop is often:

 initialize condition; while(test condition) { do things; change condition; }

This is so common, that there is a statement that does exactly that: the for loop.

for(initialize; condition; change) statement

initialize, condition and change are (possibly empty) expressions. A simple example:

42

sum = 0
for(i = 1; i <= 10; i++)
{
 sum += count;
}

You can use break and continue statement in the for loop. The break jumps out of the loop. The continue
executes the change expression then dependent on the condition enters the body again, or terminates.

All three expressions may be empty, so forever can be written as

for(;;);

Not very useful maybe, but once you add a body with a break, it could make sense.

2.9.6.7. Try, catch
Usually, when DTC encounters an error condition, such as integer overflow, or array index out of
bounds execution of the program is stopped, and DataThief shows an error message. Sometimes that is not
what you want, so it is possible to catch the error message. The syntax is

try statement1 catch(variable) statement2

When an error occurs in the execution of statement1, variable will receive the error message and
statement2 is executed. For example

s = "abc";
try
{
 v = s[4];
}
catch(error)
{
 // eror will contain String "String index out of bounds"
 v = 0;
}

The effect is that whenever s contains less then 5 characters, or when s is not a string or array, v will
contain 0;

2.9.7. Functions
Almost all information concerning DTC has been given to enable you to write your own functions. A function is
little more than a compound statement that returns a value. But the nice thing is, that even though you can not
use a compound statement in an expression, you can use a function in an expression.

This allows you to add more mathematics to your DataThief then I could ever think of.

2.9.7.1. Defining functions
A function definition has as syntax:

function name(parameters) { statements }

Name may be any identifier. DataThief allows you to have a function with the same name as a variable or a
constant, but this may make your code less readable.

Parameters is just a list of identifiers separated by comma's. When the function is invoked (called), you have to
give as many values as you had identifiers in de function definitions parameter list.

In the function body you can use any of the parameters, or you can create your own variables, or use those
that were already defined before the function was called. When the function has to return a value, you can
use the return statement:

return expression;

The expression after return may be empty, causing the function not to return a value, but it stops execution of
the statements of the function and returns control to the calling environment of the function.

A very simple function definition is

43

function one()
{
 return 1;
}

Note that this function takes no parameters.

A slightly more complicated function computes the square of its single parameter

function square(value)
{
 return value * value;
}

Obviously, when this function is called with a parameter that is not integer or float, you raise an error. Suppose
that no matter what, you do not want to see that error, but in stead you want the function to return 0. I
shall show two alternatives.

function square(value)
{
 switch(typeof value)
 {
 case "char":
 case "integer":
 case "float":
 return value * value;
 }
 return 0;
}

But actually the following solution is faster

function square(value)
{
 try
 {
 return value * value;
 }
 catch(error)
 {
 return 0;
 }
}

This solution has as added feature, that in case of overflow 0 is returned.

As an example of a function with more parameters a function that returns the solution of a quadratic equation
in an array containing 0, 1 or 2 values.

function solveQuad(a, b, c)
{
 // remember: (-b +/- root(b ** 2 - 4ac)) divided by 2a
 result = [];
 // if a == 0, it is linear
 if(a == 0)
 {
 if(b != 0)
 {
 result[0] = (float)c / b;
 }
 return result;
 }
 v = b * b - 4 * a * c;
 if(v < 0)
 {

44

 //no solutions
 return result;
 }
 if(v < 1e-20)
 {
 // v very small, only one solution
 result[0] = -b / (2.0 * a);
 return result;
 }
 v = sqrt(v);
 result[0] = (-b + v) / (2 * a);
 result[1] = (-b - v) / (2 * a);
 return result;
}

Note that we use floating point numbers and once a cast to force the result of division to be floating point.

2.9.7.2. Invoking functions
A function is called by using it's name followed by a bracket, the parameters separated by comma's, and a
close bracket. Hence the function square we defined in the previous paragraph could be called by

square(4)

But usually the function call will be part of an expression as in

v = 3 * square(4);

Note that even when the function has no parameters, the brackets must be present in the function call, so the
function "one" that was introduced in 2.9.7.1 must be called with

a = one();

The parameters of a function are passed by value. This means, that if you use a variable as parameters
and in the function you change the contents of the parameter, the value of the variable outside the function
is not changed.

function mod(var)
{
 var = 2;
 return var;
}
a = 1;
mod(a);
// a is still 1

But the contents of parameter is not copied. This means that if you have a string or array as parameter, any
changes to the contents of the parameter reflect outside the function.

function toUpper(s)
{
 if(s[0] >= 'a' && s[0] <= 'z')
 {
 s[0] += 'A' -'a';
 }
}
hi = "hello world";
toUpper(hi);
// hi contains "Hello world"

mod(hi);

// hi still contains "Hello world"

45

2.9.7.3. Scope of variables
Consider the following code

function possible_side_effect()
{
 a = 1;
 return a;
}

If this function is called when a constant a is in existence, this existing a's value will be altered. This is because
when a variable name in a function is encountered, DataThief searches in the body of the function for a
variable with that name. It the variable is not found, DataThief searches the global level - within DataThief
that are all constants - for a variable with the required name. I that is not found as well, a new variable is
created within the body of the function. But, obviously, if the variable existed on the global level, that variable
is used. This is usually not what you want. To prevent DataThief from searching the global level, or more
precisely, to force DataThief to create a new variable within the body of the function, you can precede the
variable name with the keyword "local".

So a new version of above function is

function no_side_effect()
{
 local a = 1;
 return a;
}

If you use the "local" keyword, you must initialize the variable, so a C-style or JavaScript style declaration

local a;
...
a = 1;

Is not valid.

How local is local?

The answer is: "Very".

consider

function a()
{
 local x = 1;
 for(local x = 3; x < 5; x++)
 {
 ...
 z = x;
 }
 local y = x;
}

At the end of the function y will have a value of 1. The local x in the for loop is indeed local to the loop. But,
unless the variable z is defined globally, it is also local to the same for loop. If you needed z not to interfere with
a possible global variable z, but needed the value outside the loop you must use a construction as in

function a()
{
 local x = 1;
 local z = 0;
 for(local x = 3; x < 5; x++)
 {
 ...
 z = x;
 }
 local y = x;
 // now z is known
}

46

2.9.8. Predefined functions
DataThief knows the following predefined functions

2.9.8.1. Conversion

deg
function deg(angle)

angle is in radians. The result is the angle in degrees.

rad
function rad(angle)

angle is in degrees. The result is the angle in radians

ceil
function ceil(value)

value is int or float. The result is the smallest int not smaller than value. E.g. ceil(3.2) => 4

floor
function floor(value)

value is int or float. The result is the biggest int not greater that value. E.g. floor(3.2) -> 3

round
function round(value)

value is int or float. The result is the int nearest to value. round(3.2) => 3; round3.5) => 4

join
function join(row, between)

This function joins all elements of the array row to a single string. The string between is interjected between
each of the elements.

join(["Hello", "world", 1, 2], " --- ") => "Hello --- world --- 1 --- 2"

split
function split(str, between)

the string str is converted to an array. Each occurrence of the string between is used to split the
string. If between is not present in str, the result is an array with one element which is the original str.
If between is an empty string "", The result will be an array of strings, each containing one character of
the original str.

split("This is a string", " ") => ["This", "is", "a", "string"]

split("This is a string", "q") => ["This is a string"]

split("This is", "") => ["T", "h", "i", "s", " ", "i", "s"]

A funny effect of split and join is that you can use it as a string substitute function:

function substitute(str, from ,to)
{
 return join(split(str, from), to);
}

2.9.8.2. Mathematical

sin, cos, tan
function sin(angle)
function cos(angle)
function tan(angle)

Return the sine, cosine and tangent of the int or float angle. angle is in radians.

47

asin, acos, atan
function asin(value)
function acos(value)
function atan(value)

Return the inverse trigonometric function. The result is in radians.

atan2
function atan2(x, y)

Returns the arc tangent of x / y, using the sign of both to determine the quadrant. The result is in radians.

sqrt
function sqrt(value)

Returns the square root of the int of float value.

log, ln
function log(value)
function ln(value)

Return the base 10 respectively natural logarithm of the int or float value.

2.9.8.3. Date and time

currentTime
function currentTime()

Returns an integer containing the current time in milliseconds since January 1, 1970.

toDate
function toDate(time, format)

This function converts the time to a string according to format.

Format may contain the patterns from the table below to insert specific parts of the date in the resulting string.
Any character in format that do not appear in the table appear literally in the resulting string.

 Field Full form short form

 Year yyyy (4 digits) yy (2 digits)

 Month MMMM(name) MMM (3 characters of name)

 Month MM (2 digits) M (1 or 2 digits)

 Day of week EEEE EE

 Day of month dd (2 digits) d (1 or 2 digits)

 Hour (1-12) hh (2 digits) h (1 or 2 digits)

 Hour (0-11) KK (2 digits) K (1 or 2 digits)

 Hour (1-24) kk (2 digits) k (1 or 2 digits)

 Hour (0-23) HH (2 digits) H (1 or 2 digits)

 Minute mm (2 digits) m (1 or 2 digits)

 Second ss (2 digits) s (1 or 2 digits)

 Millisecond SSS (3 digits) S (1, 3 or 3 digits)

 AM/PM a

 Time zone zzzz zz

 Day of week in month F (e.g. 3rd Thursday)

 Day in year DDD (3 digits) D (1, 2, or 3 digits)

 Week in year ww(2 digits) w (1 or 2 digits)

 Era (BC/AD) G

48

toDate(1000000000000, "d-MMM-yyyy HH:mm:ss") => "9-Sep-2001 03:46:40"

fromDate
function fromDate(date, format)

This is the reverse of toDate. FromDate takes the string date, parses it according to the string format, and
returns an int that is the number of milliseconds between date and January 1 1970 00:00:00:000 GMT.

The patterns in format are the same as for toDate.

fromDate("9-Sep-2001 03:46:40", "d-MMM-yyyy HH:mm:ss") => 1000000000000

It is permitted to leave parts out of the date (as we already have seen from the "Date" and "Time" translators.

What will hold is for a format format and a string when

toDate(fromDate(when, format), format) == when

2.9.8.4. various

format
function format(number, fmt, precision)

This function returns a string containing the value of number formatted according to fmt and precision.

fmt is a string that field length, sign specification and number format.

Field length is an integral number that specifies the number of characters to be used. The resulting string will
be at least as long as the field length. If field length is negative, the string will be right padded with spaces, for
a positive field length padding will be left. If field length is omitted, no padding is performed.

The sign specification is either nothing or a plus sign. The plus sign forces a plus to be present on positive
numbers.

the number format is one of

 d number is treated as decimal integer.

 o number is treated as octal integer

 x number is treated as hexadecimal integer with result in lower case

 X number is treated as hexadecimal integer with result in upper case

 e, E number is treated as floating point with precision digits after the decimal point. If the

 number of digits before the decimal point exceeds 14, the format is treated as f or F.

 f, F number is treated as floating point in scientific notation. The number has precision digits
 after the decimal point (and always one before the decimal point)

 g, G translates to e or E if the exponent is less than precision, to f or F otherwise.

For the decimal formats, the precision is discarded.

For the floating point formats, the difference between the lower - and upper case format letter is shown in a
lower - or upper case E for the exponent.

If precision is negative, trailing zero's are omitted from the fractional part. If precision is 0, no decimal point
is present.

Some examples

format(1.2345432325252236E22, "f", 3) => "123454323252522.359e8"
format(1.23, "-8f", -3) => "1.23 "
format(1.23, "8f", -3) => " 1.23"
format(1.23, "8+f", 3) => " +1.230"
format(123, "x", 0) => "7b"
format(123, "d", 0) => "123"
format(123, "o", 0) => "173"
format(123456.789, "e", -3) => "1.235e5"
format(123456.789, "f", -3) => "123456.789"
format(123456.789, "g", -3) => "1.235e5"
format(123456.789, "g", -6) => "123456.789"

49

precision
function precision()

This function returns the precision as set in the Settings-tab or the Data Definition Preferences. You can use it
as parameter to the format function, or when you want to write your own formatting procedure.

parameter
 function parameter(which)

This function returns the current value of a DataThief parameter. which is a string, and may contain one of

 "look back"

 "box size"

 "look ahead"

 "direction"

 "tolerance"

 "center"

 "imagefile"

The first six return the integer value of the named parameter from the trace controls. The last returns a string
with the path name of the current image file. For example

 parameter("Tolerance")

could return 3.

setRuntime
function setRuntime(seconds)

To prevent DataThief from running for ever when DTC enters an infinite loop, there is a limit to the time DTC
will spend in a function. The time is default 5 seconds. When this is not enough, you can change it using this
function. The function returns the previous run time limit. Note, that counting run time seconds starts from zero
every time you call this function. So if you happen to call this function after 4 seconds with a parameter of 5,
the total allowed run time will be 9 seconds.

Note, that when the run time is expired, an error condition is raised. You may catch this error. But as the run
time is still expired, you will receive a new run time exceeded error after one second and so on.

message
function message(text)

This function enters text into text field of the message tab, and opens the message tab. You can use it
to alert the user of an error condition. The message will remain visible as long as the code that calls the
message function is used. Suppose you have a translator that requires a positive number, then you will have
the following code

function translate(v)
{
 local value = eval(v);
 // no need to catch errors, those will give a message anyway
 if(value <= 0)
 {
 message("Translator requires positive number, found " + v);
 return;
 }

}

As soon as all coordinate values result in positive values, the message tab will hide itself.

eval
function eval(text)

This function treats text as if it was DTC expression and returns the result. This can, as in the above
example, be used to convert a string of digits to a numeric value, but you can also use it to create a new

50

expression as in

a = '121";
b = "14";
c = eval(a + "+" + b);
d = a + b;
e = eval("sqrt(" + a + ")")

The result is of course that c contains 135, d contains "12312" and e contains 11.0;

2.9.9. A full scale example
For a complete example of DTC in DataThief we shall write our own equivalent of the date translator that we
preciously implemented using toDate() and fromDate().

What we need is a function translating a stringin the form "day-month" to a number and a second function
translating a number back to a string in the from "day-month".

Let us start with the first. Obviously, we need to know the names of the months, so we define

mname = ["jan", "feb", "mar", "apr", "may", "jun", "jul", "aug", "sep",
"oct", "nov", "dec"];

And we need to know howmany days each month has - disregarding leap years.

mlength = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31];

Now we define the basis of the the function to make a number out of a date. In this first draft we do not yet
check for errors; we assume that the input is valid.

function day2num(date)
{
 // date is day-month, split it on the hyphen
 local parts = split(date, "-");
 // find out which day of the month we have
 // it is still a string, so eval() to convert to int
 local days = eval(parts[0]);
 // add days from previous months
 for(local month = 0; month < sizeof mname; month++)
 {
 if(mname[month] == parts[1])
 {
 // we have found the requested month, return result
 return days;
 }
 days += mlength[month];
 }
 // hey, we have not found the month, this should be an error...
 message("No month found in " + date);
}

This function returns 1 for "1-jan" and 365 for "31-dec". We show a message when the month is not found,
but input like "a-jan" wil generate an error "a not defined" (in the eval(parts[0])). Also, because string
comparison is case sensitive, "1-Jan" will not give a correct result. To address the last problem first, we define
a new function that changes every upper case character in a string to lower case. The change is made in the
string itself, but the result is returned nevertheless.

function lowerCase(s)
{
 for(local i = 0; i < sizeof(s); i++)
 {
 if(s[i] >= 'A' && s[i] <= 'Z')
 {
 s[i] += 'a' - 'A';
 }
 }

51

 return s;
}

And now we do the function day2num again

function day2num(date)
{
 local parts = split(date, "-");
 if(sizeof parts != 2)
 {
 // no hyphen in the input
 message("Can not make a date out of " + date);
 return;
 }
 // find out which day of the month we have
 local days = eval(parts[0]);
 if(typeof days != "int")
 {
 message("Invalid day in " + date);
 return;
 }
 // make month lower case
 lowerCase(parts[1]);
 // add days from previous months
 for(local month = 0; month < sizeof mname; month++)
 {
 if(mname[month] == parts[1])
 {
 // we have found the requested month, return result
 return days;
 }
 days += mlength[month];
 }
 message("No month found in " + date);
}

Now we define the function to create a date out of a number

function num2day(num)
{
 // first check validity of input
 if(num < 1)
 {
 num = 1;
 }
 if(num > 365)
 {
 num = 365;
 }
 local month = 0;
 while(num > mlength[month])
 {
 num -= mlength[month++];
 }
 // we are at the month, but we don't want "12.4-feb"
 return round(num) + "-" + mname[month];
}

The file date.dtc, that can be downloaded from http://www.datathief.org, contains this code. You can of
course type it into the Function Preferences panel, but you can open DTC files, provided the file has the
extension .dtc.

52

Once you have the functions defined, create a new Translator "date2" with

Trans = num2day(v)

Reverse = day2num(v)

And select this translator in your output definition.

When we want to specify a distance in the output system for data point culling, we can of course redefine
day as

day = day2num("2-feb") - day2num("1-feb")

but we know that with this translator day is 1. (as we know now that in the older date translator day was 24 *
3600 * 1000 (the number of milliseconds in one day)).

2.10. Known problems
Software hardly ever is entirely without problems. When a program is supposed to run on platforms as different
as Linux, Windows and MacOS the number of problems probably only increases.

This version of DataThief has been developed on a system running Fedora Core 2 and J2ee SDK 1.4. It has
extensively been tested on this platform and on a system running Windows XP SP2 using J2se RE 5.0.1.
Further test have been done on a Macintosh running MacOS 8.6 and MRJ 2.2.5. and another Macintosh
running MacOS X.3. A testrun has been performed on a system running SUN Solaris. The basic functionality
on all these systems was OK.

Actually the only problems I have found until now - I regret to say - is on the development system.

Linux

DataThief stuck after window close
On my Linux system using J2ee SDK 1.4, it happens that the Java Interpreter seems to stop processing
events for some time (typically several seconds) after closing a window, both dialogs and the main window.
Eventually processing resumes, so if this happens, please exercise patience.

Mouse wheel does not work properly
On a Linux system using J2ee SDK 1.4, the mouse wheel alters the position of the vertical scroll bar, but
this does not affect the view area.

If you encounter problems using DataThief please mail them to

 bas@datathief.org

